6x^2+9y^2-3=

Simple and best practice solution for 6x^2+9y^2-3= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2+9y^2-3= equation:


Simplifying
6x2 + 9y2 + -3 = 0

Reorder the terms:
-3 + 6x2 + 9y2 = 0

Solving
-3 + 6x2 + 9y2 = 0

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '3' to each side of the equation.
-3 + 6x2 + 3 + 9y2 = 0 + 3

Reorder the terms:
-3 + 3 + 6x2 + 9y2 = 0 + 3

Combine like terms: -3 + 3 = 0
0 + 6x2 + 9y2 = 0 + 3
6x2 + 9y2 = 0 + 3

Combine like terms: 0 + 3 = 3
6x2 + 9y2 = 3

Add '-9y2' to each side of the equation.
6x2 + 9y2 + -9y2 = 3 + -9y2

Combine like terms: 9y2 + -9y2 = 0
6x2 + 0 = 3 + -9y2
6x2 = 3 + -9y2

Divide each side by '6'.
x2 = 0.5 + -1.5y2

Simplifying
x2 = 0.5 + -1.5y2

Reorder the terms:
-0.5 + x2 + 1.5y2 = 0.5 + -1.5y2 + -0.5 + 1.5y2

Reorder the terms:
-0.5 + x2 + 1.5y2 = 0.5 + -0.5 + -1.5y2 + 1.5y2

Combine like terms: 0.5 + -0.5 = 0.0
-0.5 + x2 + 1.5y2 = 0.0 + -1.5y2 + 1.5y2
-0.5 + x2 + 1.5y2 = -1.5y2 + 1.5y2

Combine like terms: -1.5y2 + 1.5y2 = 0.0
-0.5 + x2 + 1.5y2 = 0.0

The solution to this equation could not be determined.

See similar equations:

| 3x+22+y=180 | | x-15=-30 | | x=-558*sin*186*(.002)*sin*186*(.002)+558*cos*186*(.002)*cos*186*(.002) | | -16x^2+34x+4=2 | | x+1=7x-23 | | 12c^2=13c-3 | | X=-558*sin*186 | | -16x^2+34x+4=0 | | 18=6x+6x+6 | | (a+4)(a+7)=0 | | -16x^2+34x+18=2 | | 4x+32=11x-54 | | 3(x-5)+2x=10 | | 16x^2-34x+18=2 | | 9c^2-26c-20=20 | | 4y^2-8y=3-12y | | .25(k-1)=10 | | -16x^2+34x+18=0 | | 6(8+2x)=120 | | 3(7+5x)=156 | | -4(4y-7)+3(2y+6)= | | a^2-10a+22=-2 | | 6x+x=4x+6 | | 4y-28=2x | | (9w^2-30w+25)-(w^2+14w+49)=0 | | 9+x=2x-2 | | 5c^2-5c-95=5 | | X^2+36x=460 | | 5x+9+3x=9 | | x^2+6x+12=4 | | 3y^2-2y+6=6 | | d^2+6d+9=0 |

Equations solver categories